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The papers in this special issue feature state-of-the-art approaches to understanding the physical processes
related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on
the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the
Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by
numerous anthropogenic activities common tomany large estuaries, including amining legacy, channel dredging,
aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic
species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet
connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 109 m3/day, in addition
to the transport of mud, sand, biogenic material, nutrients, and pollutants. Despite this physical, biological and
chemical connection, resource management and prior research have often treated the Delta, Bay and adjacent
ocean as separate entities, compartmentalized by artificial geographic or political boundaries. The body of work
herein presents a comprehensive analysis of system-wide behavior, extending a rich heritage of sediment trans-
port research that dates back to the groundbreaking hydraulicmining-impact research of G.K. Gilbert in the early
20th century.

Published by Elsevier B.V.
1. Introduction

San Francisco Bay (Fig. 1) is the largest estuary on the U.S. West
Coast, and the 2nd largest in the United States (Conomos et al., 1985);
combined with the contiguous Sacramento–San Joaquin Delta (Fig. 2)
it covers a total surface area of ~4100 km2 and a watershed area of
~162,000 km2. It contains several economically significant harbors
($20 billion worth of cargo annually) in one of the most developed
regions of the United States, with a surrounding population of over
seven million people. San Francisco Bay and the adjoining Delta are
among the most human-altered estuaries and hydrologic systems,
respectively, in the world (Knowles and Cayan, 2004). Major historical
changes were driven by the extensive hydraulic mining influx of sedi-
ment in the late 19th century (e.g., Gilbert, 1917), massive alteration
of the drainages entering San Francisco Bay in the 20th century
(e.g., Wright and Schoellhamer, 2004), and the enormous amounts of
sediment removed throughout the San Francisco Bay Coastal System
from the early part of the 20th century to the present (e.g., Dallas and
Barnard, 2011). The system is well-advanced along the timeline of
humandevelopment common tomany estuaries, i.e., disruption (mining,
.V.
deforestation, agriculture, urbanization) in the watershed that increases
load, followed by dams, water diversions, and river management that
reduce variability and thus sediment supply, and now restoration of
damaged habitats. The many alterations to the system have resulted in
significant changes to the Bay floor, area beaches, Bay-fringing tidal
marshes, and ecosystems, serving as an example for understanding
the evolution of other estuaries. Coupled with strong anthropogenic
signals, distinct and powerful natural processes make this region the
ideal scientific laboratory for analyzing sediment transport processes,
including strong seasonal variability between wet and dry seasons,
well-defined flow pulses, strong interannual variability of freshwater
inflow,well-defined estuarine boundaries, and strong seasonal variations
inwind strength. In addition to the above, intense resourcemanagement
has provided a critical mass of modern data and studies.

This special issue is a culmination of nearly 100 years of sediment
transport research in the San Francisco Bay Coastal System. Here we
present ~20 papers, representing the state-of-the-art in sediment trans-
port research on many topics, ranging from tidal marsh sustainability,
suspended sediment transport variations, bedform migration and evo-
lution, behavior of the open coast littoral system, and fluvial inputs.
The intention of this introductory paper is to describe prior research
that forms the basis of our understanding of the fundamental processes
that shape this complex coastal–estuarine system, and to clearly identify
the data gaps that are addressed in this special issue.

http://dx.doi.org/10.1016/j.margeo.2013.04.005
mailto:pbarnard@usgs.gov
http://dx.doi.org/10.1016/j.margeo.2013.04.005
http://www.sciencedirect.com/science/journal/00253227


Fig. 1. The San Francisco Bay Coastal System, including major tributaries. Fault lines from U.S. Geological Survey (2006). (ALI = Alcatraz Island, ANI = Angel Island, BFI = Bay Farm
Island, OB = Ocean Beach, TI = Treasure Island, YBI = Yerba Buena Island).
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Despite the legacy of sediment transport research in the San
Francisco Bay Coastal System, there are still some fundamental ques-
tions that remain unanswered, which this special issue addresses.

1) What are the primary sediment transport pathways, sources and
sinks?

2) How has sediment delivery to the estuary changed over the course
of the last century?

3) What is the net direction of sediment transport across the Golden
Gate? Is the Bay a net importer or exporter of sand?

4) Is there a geochemical signature that can link sediment inside and
outside the Bay?

5) What is the current trend of suspended sediment concentration
in the Bay? What are the ramifications of this signal for marsh
sustainability as sea level rises during the 21st century?

6) How will current trends in sediment transport dynamics and
projected climate change affect the future morphological evolution
of the San Francisco Bay Coastal System?

7) How do physical processes and topography control circulation and
sediment transport patterns?

8) Can fine sediment transport andmorphological evolution be effec-
tively simulated with numerical models?

While this special issue will have direct implications for the
regional management of the San Francisco Bay Coastal System, the
techniques applied and physical processes analyzed throughout this
special issue are on the cutting edge of sediment transport research,
and add to the collective knowledge base and understanding of coastal–
estuarine systems worldwide.
2. Historical geomorphology and sediment transport

2.1. Early history of San Francisco Bay

San Francisco Bay is situated in a tectonically active basin created
from a structural trough that formed during the late Cenozoic (Lawson,
1894, 1914; Atwater et al., 1977; Atwater, 1979). It is bordered by the
Hayward Fault Zone to the east and the San Andreas Fault Zone to the
west (Fig. 1), which are both associated with the plate transform mo-
tion of the San Andreas Fault system (Parsons et al., 2002). The basin
has been occupied by an estuary during interglacial periods, and was
traversed by a fluvial system during glacial periods, with the current
drainage configuration from the Central Valley established by ~0.4–
0.6 Ma (Lawson, 1894, 1914; Atwater et al., 1977; Atwater, 1979;
Sarna-Wojcicki et al., 1985; Harden, 1998; Lanphere et al., 2004). The
open-coast shoreline was located approximately 32 km west of its
present position during the Last GlacialMaximum (~18 ka), the current
position of the continental shelf break. The basin was most recently
flooded during the Early Holocene (Gilbert, 1917; Louderback, 1941,
1951), between 10 ka and 11 ka, as rising sea level inundated the
Sacramento River channel that cuts through San Francisco Bay, through
the Golden Gate straight, and across the continental shelf (Atwater
et al., 1977). Schweikhardt et al. (2010) interpreted the oxygen isotopic
composition of foraminifera in a sediment core taken from San
Francisco Bay to indicate that the modern estuary was established by
7.7 ka, by 7.4 ka the estuary was highly stratified, and within another
century a gradual decrease in water column stratification produced
conditions that are similar to the modern, partially-mixed estuary. In
the Delta, marshes began forming approximately 6.8 ka, which is likely
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Fig. 2. The Sacramento–San Joaquin Delta.
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related to inundation from rising sea-levels at that time (Drexler et al.,
2009). After rapid sea level rise in the Early Holocene of up to
2 m per century (Atwater et al., 1977), Central Bay and San Pablo Bay
had filled their current basins by ~5 ka (Atwater, 1979), with evidence
suggesting the initial development of fringing tidal salt marshes at
~4.7 ka (Goman et al., 2008).McGann (2008) recognized numerous cli-
mate oscillations between warm/dry and cool/wet conditions over the
last 3.9 ka, based on the faunal assemblages and an isotope record of a
core from South Bay that are shaped by variations in fluvial discharge
andwater temperature. The top of the core is dominated by the invasive

image of Fig.�2
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foraminifera Trochammina hadai, an indicator of pollution and eutrophi-
cation of the modern estuary, that is thought to have arrived in San
Francisco Bay in the early 1980s (McGann et al., 2000).
2.2. Modifications to the natural system

2.2.1. Hydraulic mining
Major anthropogenic changes to the Bay (Fig. 3) began during the

period of large-scale hydraulic gold-mining in the Sierra Nevada from
1852 to 1884 (Gilbert, 1917; Krone, 1979) and have continued to the
present. Over 850 million m3 of sediment was discharged into water-
sheds that drain into San Francisco Bay due to hydraulic mining
(Gilbert, 1917), with a net sediment deposition of over 350 million m3

in the Bay between 1856 and 1887 (Capiella et al., 1999; Foxgrover
et al., 2004; Jaffe et al., 2007; Fregoso et al., 2008). This period of high
sedimentation also coincided with abnormally high regional precipita-
tion conditions: stations in Southern California established annual and
monthly precipitation records in the 1880s, and the 3 largest floods in
the historical record occurred between 1861 and 1891 (i.e., January
1862, December 1867, and February 1891). The first flood had well-
documented massive, state-wide impacts (Engstrom, 1996), and the
latter two were associated with El Niños (Sidler, 1968; Quinn et al.,
1987). These resulting anomalous discharge conditions aided themove-
ment of sediment into San Francisco Bay during this time period. Due to
this enormous sediment influx, there was a dramatic seaward migra-
tion of the Bay shoreline, including the development of extensive inter-
tidal flats and tidal marshes (Gilbert, 1917; Peterson et al., 1993; Jaffe
et al., 2007). Bouse et al. (2010) quantitatively linked the sediment
produced by hydraulic mining with the massive influx of sediment in
San Francisco Bay using radionuclide dating, bathymetric reconstruc-
tion, and geochemical tracers, including mercury. In addition, surface
Ship channel offshore
dredge disposal =

-21 million m3 
(1931-1971)

95% of tidal marsh 
leveed or filled 
(1850s-1970s)

Shoreline armoring 
and seaward 

beach extension 
(1920s-1930s)

Reservoir construction =
reduced sediment 
supply to the Bay

(1892-1968)

Fig. 3. Examples of major anthropogenic activities and approximate time period of influ
sediment cores extracted in 1990 were still found to contain up to
43% hydraulic mining debris, indicating an ongoing remobilization
and redistribution of this sediment within the system, with mercury
contamination still posing a concern (David et al., 2009). Gilbert
(1917) estimated that the effects of the mining would continue until
~1960s, and it has been demonstrated that the main pulse of bed sedi-
ment passed Sacramento by 1950 (Meade, 1982), aided by the construc-
tion of dams throughout the watershed (Wright and Schoellhamer,
2004).
2.2.2. Delta and other watershed modifications
Construction of dams, reservoirs, flood-control bypasses, and bank

protection in the 20th century trapped and/or reduced the transport
of sediment to the Bay (e.g., Brice, 1977; Wright and Schoellhamer,
2004;Whipple et al., 2012). Three of the largest dams in the Sacramento
River watershed (Oroville, Folsom, and Englebright), which were
constructed between 1940 and 1967, had impounded 85 Mm3 of
sediment by the end of the 20th century (~96 Mt, assuming a specific
dry weight of the sediment deposit of 1121 kg/m3; Vanoni, 1975)
(U.S. Bureau of Reclamation, 1992; California Department of Water
Resources, 2001; Childs et al., 2003). Not only do dams and reservoirs
trap sediment, they also regulate down channel flows, often reducing
or eliminating the peak flows that transport the majority of the sedi-
ment. However, there is no evidence of this in the Delta (Wright and
Schoellhamer, 2004) where the frequency of high flows has been
increasing (Schoellhamer, 2011). Canuel et al. (2009) determined that
sediment accumulation rates in the Delta were 4–8 times greater prior
to 1972 than after, and Jassby et al. (2002) noted a decrease in
suspended-solid concentrations in the Delta from 1975 to 1995.

On the other hand, the extensive levee system in the Central Valley
and Delta has served to isolate the flood plain from the main river
Delta modifications =
50% reduction in suspened 

sediment (1957-2001)

Hydraulic mining =
+850 million m3 

to Bay watersheds
(~1850’s-1950’s)

Dredging, borrow pits,
aggregate mining =

-200 million m3 
(1900- present)

Bay development =
~10% reduction in 

tidal prism
(~1850’s-1950’s)

Groundwater pumping =
shoreline subsidence

 up to 1 m
(1854-1969)

Bay fill = 
subsidence

 up to 2 cm/yr
(1850s-present)

ence to the San Francisco Bay Coastal System. See text for appropriate references.
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channels, potentially increasing the sediment yield, along with logging,
urbanization, agriculture, and grazing (Wright and Schoellhamer, 2004;
Whipple et al., 2012). Construction activities and other forms of urban-
ization can generate sediment yields that are two orders of magnitude
higher than erosion rates reported for stable urbanized areas, and
even higher when compared to primarily natural areas with low or no
measurable human impact (Lewicki and McKee, 2010). Suspended
sediment yield from Guadalupe River, a small tributary watershed
draining to the South Bay, was 4–8 times higher in the mid-20th centu-
ry, during urbanization, than the early 21st century (McKee et al., 2004;
Schoellhamer et al., 2008b), and yields from the Alameda Creek water-
shed also draining to the South Bay, Colma Creek, south San Francisco,
and Cull Creek in the East Bay hills also appear to have decreased
since the 1960s (Philip Williams and Associates and San Francisco
Estuary Institute, 2006). However, overall it is not clear what the trends
have been over the longer history of intensive local watershed develop-
ment in the 9-county Bay Area since the 1850s.

2.2.3. Subsidence
Extensive groundwater pumping in the Santa Clara Valley, particu-

larly from 1916 to 1966, led to as much as 4 m of local subsidence in
San Jose, including up to 1 m of subsidence along the southern reaches
of the South Bay shoreline, leading to the extensive flooding of low-
relief land adjacent to the Bay (Poland and Ireland, 1988). In response,
vegetation in South Bay shifted from high marsh vegetation to cord-
grass but widespread marsh degradation did not occur because of
rapid surface sediment accumulation (Patrick and DeLaune, 1990;
Watson, 2004). Some of the submerged land has been recovered
over the last several decades due to more responsible groundwater
pumping practices (Galloway et al., 1999; Schmidt and Bürgmann,
2003). More recently, the largest vertical rates of change measured
in the San Francisco Bay area are actually due to non-tectonic process-
es, particularly the consolidation of Bay mud and artificial fill that
comprise a large proportion of the area's shoreline. For example, the
northwestern tip of Treasure Island dropped ~2 cm/year from 1992
to 2000 (Ferretti et al., 2004), and subsidence up to 1 cm/year occurs
along natural, mud-dominated shoreline areas (Bürgmann et al.,
2006).

2.2.4. Direct sediment removal and Bay modifications
Over the last century, aminimumof 200 million m3 of sediment has

been permanently removed from the San Francisco Bay Coastal System
through dredging, aggregate mining, and borrow pit mining, including
at least 54 million m3 of sand-sized or coarser sediment from Central
Bay (U.S. Army Corps of Engineers, 1996; Friends of the Estuary, 1997;
Chin et al., 2004; Dallas, 2009; Dallas and Barnard, 2009, 2011). From
the mid-19th to late 20th century, the tidally-affected surface area
was reduced by ~two-thirds due to ~95% of the tidal marsh in San
Francisco Bay and the Delta being leveed or filled (Atwater et al., 1979).

Aggregate mining has been active in San Francisco Bay starting in
the late 1800s, particularly on Point Knox and Presidio Shoals in Central
Bay, with removal regulated since 1952. Aggregate mining currently
removes approximately 0.9 million m3/year of sediment in Central
Bay and Suisun Bay (Hanson et al., 2004). Dredging removes about
3 million m3/year of sediment out of navigation channels and from
other channel and berth maintenance projects, with the majority of
this material permanently removed from the San Francisco Bay Coastal
System via deep-water disposal in the Pacific Ocean (Dredged Material
Management Office, 2008; Keller, 2009; San Francisco Estuary Institute,
2009), roughly equivalent to the annual sediment supply from the
Central Valley (Schoellhamer et al., 2005).

In Central Bay, human impacts include active sandmining, dredging
and disposal, artificial shoreline fill, borrow pit mining, and underwater
rock pinnacle blasting (Chin et al., 1997, 2004, 2010; Dallas, 2009;
Dallas and Barnard, 2009, 2011; Barnard and Kvitek, 2010). From
1855 to 1979, 92% of tidal marsh and 69% of intertidal mud flats were
eliminated from Central Bay by human development, resulting in total
area loss of 4%. Bathymetric change at a borrow pit created near Bay
Farm Island from 1947 to 1979 indicates the removal of 25 Mm3 of sed-
iment (Fregoso et al., 2008). Navigational dredging of Oakland Harbor
began in 1874 and eventually at ~17 sites in Central Bay: a total of
~70 Mm3 of sediment was removed from 1931 to 1976 (U.S. Army
Corps of Engineers, 1975). Some of this material was used on land,
some disposed of nearby, such as just offshore of Alcatraz Island and
Yerba Buena Island that occasionally created dangerous shoals, and
some at deep-water disposal sites. Borrow pits in Central Bay were uti-
lized for numerous major developments, including the 22.5 Mm3

dredged to create Treasure Island in 1935 (Scheffauer, 1954).

2.3. Changes to the historical sediment supply

Prior to the Gold Rush in 1849, Gilbert (1917) estimated that the
sediment supply from the Delta to the Bay was ~1.5 Mm3/year (or
1.3 Mt/year assuming a bulk density of 850 kg/m3 per Porterfield,
1980). Based on bathymetric change data, Gilbert (1917) calculated
a total sediment load of 876 Mm3 between 1849 and 1914
(13.5 Mm3/year, 11.5 Mt/year, 9 times the pre-Gold Rush rate),
with 38 Mm3 passed through to the Pacific Ocean. The sediment sup-
ply peaked near 1884 at > 24.9 Mt/year (Ganju et al., 2008).

Historically, the majority of the sediment load to San Francisco Bay
was supplied from the Delta (Krone, 1979; Porterfield, 1980), with the
Sacramento River producing seven times the sediment yield of the
San Joaquin River (Oltmann et al., 1999). Porterfield (1980) used rating
curves from individual Bay tributaries to estimate a total load of
6.6 Mm3/year (5.6 Mt/year) from 1909 to 1966, 86% of this coming
from the Delta. From 1957 to 1966 the load from the Delta was slightly
less at ~83%. Porterfield (1980) sampled the Sacramento River bed
numerous times in the 1960's during a range of flow conditions, and
found the median grain size (D50) to consistently range between 0.29
and 0.39 mm. From 1957 to 1966, bedload was estimated to account
for 1.4% of the total sediment discharge, but sand discharge accounted
for 52% of the total load. The San Joaquin River carried much less sand
during this period, only 28% of the total load. Porterfield (1980) also
used Gilbert's (1917) projections to estimate a total flux to the ocean
of only 0.3 Mm3/year from 1909 to 1966, 5% of the estimated supply
that entered the Bay annually. Suspended sediment loads decreased
by 50% from the Sacramento River from 1957 to 2001, from ~2-3 Mt
to 1–2 Mt, or a total reduction of ~25 Mt (Wright and Schoellhamer,
2004; Singer et al., 2008). Schoellhamer et al. (2005) estimated that
by the end of the 20th century, sediment supply to the Bay from the
Delta and local tributarieswas roughly equal, a trend that had been pre-
dicted by Krone (1979) and most recently confirmed by Lewicki and
McKee (2010).

Ganju et al. (2008) used these prior studies as a guide to recon-
struct decadal sediment loads for the Sacramento–San Joaquin Delta
from 1851 to 1958, with measured data since 1958 (Ogden Beeman
and Associates, 1992; USGS, http://waterdata.usgs.gov/nwis) used to
complete the historical sediment load time-series (Fig. 4). Ganju
et al. (2008) estimated a decrease in mean annual sediment loads to
the Delta from a high of greater than 10 Mt/year in the late 19th
century to less than 3 Mt/year in the latter half of the 20th century,
with a dramatic decrease after 1910. The timing of dramatic changes
in sediment loads is tied to the onset and subsequent cessation of
hydraulic mining, followed by major Delta modifications, including
the construction of reservoirs, in-stream diversions in the Sacramento
and San Joaquin Valleys, and in-Delta withdrawals (e.g., freshwater
pumping) (Knowles and Cayan, 2004).

2.4. Geomorphic response of the San Francisco Bay Coastal System

The precise impact of the aforementioned disturbances and changes
to the sediment supply for the San Francisco Bay Coastal System is

http://waterdata.usgs.gov/nwis


Fig. 4. Reconstructed decadal sediment load from the Sacramento and San Joaquin rivers (from Ganju et al., 2008, using bulk density estimates of 529 kg/m3 per Schultz, 1965;
Krone, 1979), with the major periods of hydraulic mining (1852–1884) and Delta modifications (1910–1975) highlighted.
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difficult to quantify, although a series of bathymetric change studies
have been effective in developing potential causal links. Net sediment
volume changes to the Bay from 1855 to 1989 were derived from
measured historic bathymetries by Capiella et al. (1999), Foxgrover
et al. (2004), Jaffe et al. (2007), and Fregoso et al. (2008). These
studies, coupled together, are summarized as follows: +350 Mm3

(1855–1887) attributed to hydraulic mining; +10 Mm3 (1887–1922)
attributed to flushing out of hydraulic mining sediment into the Pacific
Ocean; +120 Mm3 (1922–1947) attributed to additional influxes of
stored hydraulic mining sediment, and urbanization and increased agri-
cultural land use in thewatersheds;−180 Mm3 (1947–1989) attributed
to sediment trapping/diversion in the Delta, waning of the hydraulic
mining and urbanization pulses, and direct removal of sediment from
the Bay for dredging, aggregate mining, and borrow pits (Barnard and
Kvitek, 2010; Dallas and Barnard, 2011; Schoellhamer, 2011).

After an estimated net of 115 Mm3 of sediment was deposited in
Suisun Bay from 1867 to 1887, the sub-embayment quickly began to
erode, with a total net loss of ~262 Mm3 from 1887 to 1990 (Capiella
et al., 1999), largely attributed to the cessation of hydraulic mining
and river management projects (Wright and Schoellhamer, 2004).
San Pablo Bay only became net erosional in the mid-20th century (Jaffe
et al., 2007).

Fregoso et al. (2008) demonstrated that Central Bay gained
42 Mm3 of sediment from 1855 to 1979, but there were periods of
erosion (−2 Mm3/year, 1855–1895) and accretion (+3 Mm3/year,
1895–1947). Most notably, the last time period was net erosional
(−2 Mm3/year, 1947–1979), particularly in West-central Bay (−31 Mm3),
coinciding temporally and spatially with the onset of large-scale aggre-
gate mining.

Focusing on the last half-century for the entire San Francisco Bay
Coastal System, sediment loss trends have been documented in
North Bay (i.e., San Pablo (Jaffe et al., 2007) and Suisun Bay (Capiella
et al., 1999)), Central Bay (Fregoso et al., 2008; Barnard and Kvitek,
2010), and the San Francisco Bar (i.e., mouth of San Francisco Bay:
Hanes and Barnard, 2007; Dallas and Barnard, 2009, 2011), with
only South Bay showing net accretion (Jaffe and Foxgrover, 2006)
(Fig. 5). The mouth of San Francisco Bay lost over 90 million m3 of
sediment between 1956 and 2005 (Hanes and Barnard, 2007), Central
Bay lost 52 million m3 of sediment between 1947 and 1979 (Fregoso
et al., 2008), and an additional 14 million m3 of sediment between
1997 and 2008, linked directly to aggregate mining (Barnard and
Kvitek, 2010). Applying rates of volume change for each sub-
embayment and the San Francisco Bar from 1956 to 2005 would
result in an estimated sediment loss of 240 million m3 from the entire
San Francisco Bay Coastal System. In 1999 there was a 36% step
decrease in suspended sediment concentrations observed inside the
Bay between the 1991–98 and the 1999–2007 water years, broadly at-
tributed to the depletion of the ‘erodible sediment pool’ created by hy-
draulic mining and possibly urbanization, and further reduced by river
bank protection, and sediment trapping behind dams and in flood by-
passes (Schoellhamer, 2011).

For the open coast, there has been a net reduction of the surface area
and volume of the ebb-tidal delta since the late 19th century, which has
been linked to the decreasing sediment supply from San Francisco Bay
and shrinking of the tidal prism (Gilbert, 1917; Conomos, 1979;
Battalio and Trivedi, 1996; Hanes and Barnard, 2007; Dallas, 2009;
Dallas and Barnard, 2009, 2011). As further evidence of the reduced
sediment supply, the historical rates (late 1800s to 1998) of shoreline
erosion south of San Francisco are the highest in California (Hapke
et al., 2006, 2009) and have accelerated by 50% between Ocean Beach
and Pt. San Pedro (Fig. 1) since the 1980s (Dallas and Barnard, 2011).
Along with a reduced sediment supply, grain size, and tidal prism
that have been linked to persistent regional erosion (Barnard et al.,
2012b), scour associated with an exposed sewage outfall pipe that
was constructed in the late 1970s offshore of Ocean Beach has locally
exacerbated coastal erosion (Hansen et al., 2011).

The geomorphic and sedimentary changes caused by the hydraulic
mining sediment pulse and its subsequent diminishment have affected
the estuarine ecosystem. Hydraulic mining sediment contributed to the
creation of 75 km2 of tidalmarsh habitat (Atwater et al., 1979).Mercury
that was part of the mining debris continues to act as a legacy pollutant
in the Bay and is found in elevated levels in Bay biota (Ely and Owens
Viani, 2010). Suspended sediment in San Francisco Bay limits light
availability, photosynthesis, and phytoplankton growth (Cloern, 1987).
Decreased suspended-sediment concentration (SSC) after 1999 has
contributed to increased chlorophyll concentrations, larger spring
phytoplankton blooms, and reoccurrence of autumn blooms (Cloern
et al., 2007; Cloern and Jassby, 2012). Reduced SSCmay be one of several
factors contributing to a collapse of several San Francisco Bay estuary fish
species that occurred around 2000 (Sommer et al., 2007).

3. Present-day sediment transport and associated physical
processes

3.1. The watershed

On average, San Francisco Bay receives >90% of its freshwater in-
flux from the Sacramento–San Joaquin Delta (Conomos, 1979), with
the remainder coming from >450 smaller drainages surrounding
the Bay (McKee et al., 2013–this issue). The majority of sediment is
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Fig. 5. Measured bathymetric changes over the last ~50 years in the San Francisco Bay Coastal System. See text for appropriate references.
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delivered to the Bay in the highest flows during the wet season, from
late fall-early spring (McKee et al., 2003, 2006; David et al., 2009), for
which 87–99% of total load is suspended (Porterfield, 1980; Wright
and Schoellhamer, 2004; Schoellhamer et al., 2005).

3.1.1. The Delta
The Sacramento–San Joaquin River Delta is a complex network of

natural and man-made channels at the confluence of the two rivers
(Fig. 2). The Delta is the outlet for 40% of California's drainage area
and 92% of the San Francisco Bay drainage area (Porterfield, 1980).
The annual mean freshwater discharge rate from the Delta into the
Bay is 800 m3/s and the record Delta outflow is 17,800 m3/s in February
1986 (California Department of Water Resources, 2007). Levee con-
struction and draining of marshlands began in the latter half of the
1800s (Atwater et al., 1979). As a result, the Delta today consists of a
network of slough channels surrounding formermarshlands commonly
termed ‘islands’which are primarily used for agriculture. Because of the
high organic content of Delta soils, draining of marshes has resulted in
significant land subsidence such that most of the islands are currently
belowmean sea level, some by as much as 4 m. The Delta also contains
the pumping facilities that divert freshwater to the San Joaquin Valley
and Southern California. The channels are tidal and freshwater flows
are managed to prevent salinity from intruding landward of the west-
ern Delta. Wright and Schoellhamer (2005) used continuous measure-
ments of suspended-sediment flux to develop a sediment budget for
the Delta for water years 1999–2002. During that time period, 85% of
the sediment that entered the Delta came from the Sacramento River,
13% came from the San Joaquin River, and the eastside tributaries
(Cosumnes andMokelumne rivers) supplied the remaining 2%. Riverine
sediment delivery to the Delta was episodic with 82% of the sediment
being delivered during the wet season (31% of the time). The lower
Sacramento River is the primary sediment transport pathway because
at least 82% of the sediment entering the Delta from the Sacramento
River watershed either deposited along the Sacramento River or
moved past Mallard Island and into San Francisco Bay. Of the sediment
that entered the Delta, 67 ± 17% deposited there and the remainder
entered the Bay. Schoellhamer et al. (2012) present a conceptual
model of sedimentation in the Delta.

3.1.2. Recent sediment supply and delivery patterns
Recent estimates of suspended loads entering the estuary from the

Sacramento–San Joaquin Delta range from 1 to 1.2 Mt/year (McKee
et al., 2006; David et al., 2009) to 4 Mt/year (Shvidchenko et al.,
2004), with most of this likely mud-sized. As suspended sediment
loads from the Delta have diminished, the relative importance of
loads from the small local tributaries has increased. Lewicki and
McKee (2010) estimated that suspended sediment loads entering
the Bay from local watersheds can vary by a factor of 2–4 inter-
annually, with a mean rate of 1.3 Mt/year (35% associated with
urbanized watersheds), significantly higher than the 0.3–1.0 Mt/year
estimated in prior studies, summarized in McKee et al. (2003). These
local watersheds may now account for ~56% of the total suspended
load entering San Francisco Bay: the precise accounting has implica-
tions for the degradation of riparian habitats via siltation, the transport
of particle-associated pollutants, dredging volumes, and accretion rates
of tidal wetlands (David et al., 2009; Lewicki and McKee, 2010). These
local watersheds typically produce 50% of their annual discharge and
90% of the sediment load (80% of which is mud; David et al., 2009;
Lewicki and McKee, 2010) during only a few days (Kroll, 1975). More
recent research by McKee et al. (2006) reinforces that episodic sedi-
ment loads dominate the sediment supply to the Bay, where 10% of
annual load can be delivered in one day, and over 40% within seven
days during an extremely wet year. Within this special issue, the latest
observations of sediment supply volumes and trends will be presented

image of Fig.�5
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(e.g., McKee et al., 2013–this issue), with particular focus on the
resulting sediment transport processes and geomorphic evolution of
the San Francisco Bay Coastal System (e.g., Hansen et al., 2013a–this
issue; Schoellhamer et al., 2013–this issue).

The vastmajority of sediment fromminor drainages (~>90%) is sup-
plied as suspended load (McKee, 2006). Greater than 90% of suspended
sediment in both Coyote Creek and Guadalupe River (larger South Bay
tributaries) is silt- and clay-sized materials and 88% of suspended sedi-
ment is b0.02 mm in the Guadalupe River. Zone 6 Line B (another South
Bay tributary) differs due to its small watershed size and steep stream
slope; only 77% of suspended sediment transported is finer than
0.0625 mm. These data suggest that most of the suspended sediment
loads are likely to pass throughdredged channels and onto the Baymar-
gin where they might be available for wetlandmaintenance or restora-
tion (McKee, 2006). During average flows, sand is typically only a few %
of the total load, but can be as high as 70% during high flows, and may
account for 50% of the annual load during a very wet year, the remain-
der being mud (Porterfield, 1980). Sand and gravels are likely to be
caught inflood control channels and removed bymaintenancedredging
of the larger and managed tributary systems (Collins, 2006; McKee,
2006); further research is needed to inventory these processes for indi-
vidual channels and the Bay as a whole.

3.2. San Francisco Bay

San Francisco Bay consists of four sub-embayments, covering an
area of 1200 km2 (belowMSL). In addition to the Bay, the San Francisco
Bay Coastal System also includes the open coast littoral cell, extending
from Pt. Reyes to Pt. San Pedro, the ebb-tidal delta (i.e., San Francisco
Bar) at the mouth of San Francisco Bay, the inlet throat (i.e., Golden
Gate), and the Sacramento–San Joaquin Delta mouth (Fig. 1). Morpho-
logically, the mouth of San Francisco Bay is dominated by the San
Francisco Bar, a massive sub-sea surface ebb-tidal delta that covers a
region of approximately 175 km2, with an average depth of 17 m.
Sediments are derived fromwatersheds of the Sacramento–San Joaquin
Delta (i.e., Sierran, notably granitic) and local tributaries (Gilbert, 1917;
Yancey and Lee, 1972; Schlocker, 1974; Porterfield, 1980; McKee et al.,
2003, 2006; Keller, 2009; Lewicki andMcKee, 2010), and the local coast
range that outcrops along the open coast in theGolden Gate and Central
Bay (i.e., Franciscan Complex, notably chert and serpentine, and youn-
ger volcanic and sedimentary rocks). Themodern Bayfloor and adjacent
open coast seafloor are primarily comprised of sand andmud, overlying
metamorphic and sedimentary bedrock: the shallowest depths to bed-
rock and intermittent bedrock exposures are most common in Central
Bay (Trask, 1956; Goldman, 1969; Carlson and McCulloch, 1970; Chin
et al., 2004), within the Golden Gate (Barnard et al., 2006a,b), the north-
ern open coast, and Carquinez Strait (Jachens et al., 2002). The bottom
sediments are mud-dominated in South Bay and in the shallower
(b4 m), lower tidal energy areas of Central Bay, San Pablo Bay, and
Suisun Bay. Sand is prevalent in the open-coast littoral system, Golden
Gate and San Francisco Bar, and the deeper portions of Central Bay,
San Pablo Bay, and Suisun Bay, particularly within the main tidal
channels (Conomos and Peterson, 1977) where large bedforms (~10–
100 m wavelengths) are common (e.g., Rubin and McCulloch, 1979;
Chin et al., 2004; Barnard et al., 2012a).

Tides at the Golden Gate (NOAA/Co-ops station 9414290) are
mixed, semi-diurnal, with a maximum tidal range of 1.78 m
(MLLW–MHHW, 1983–2001 Tidal Epoch). Minor tidal fluctuations
extend up to Sacramento, 155 km from the Golden Gate. The tidal
prism exceeds the volume of freshwater inflow by one to two or-
ders of magnitude. Freshwater input represents less than 1%
(~19% during record flow) of the spring tidal prism of 2 × 109 m3

served by the Golden Gate tidal inlet (Barnard et al., 2007a). Tidal cur-
rents are therefore far stronger than freshwater flows except during ex-
treme flow conditions upstream, and cause most of the mixing in the
estuary (Cheng and Smith, 1998). Even during the highest river
discharge events, water levels at the Golden Gate are only increased by
a few centimeters, although freshwater surface flows may be significant
(Kimmerer, 2004).

Though less dominant than tidal forcing, gravitational circulation
can develop, particularly during strong stratification (e.g., Monismith
et al., 1996) and neap tidal conditions. Gravitational circulation has
been observed at deep locations in the estuary, such as the Golden
Gate (e.g., Conomos, 1979) and Carquinez Strait (Smith et al., 1995).
Schoellhamer (2001) demonstrated that estuarine turbidity maxima
form when salinity and gravitational circulation are present but they
are not associatedwith a singular salinity. Bottom topography enhances
salinity stratification, gravitational circulation and estuarine turbidity
maxima formation seaward of sills. The spring/neap tidal cycle also
affects locations of estuarine turbidity maxima. Salinity stratification
in Carquinez Strait, which is seaward of a sill, is greatest during neap
tides, causing the tidally-averaged suspended-sediment concentration
in Carquinez Strait to be less than that landward at Mallard Island in
eastern Suisun Bay. Spring tides cause the greatest vertical mixing and
suspended-sediment concentration in Carquinez Strait. Therefore,
surface estuarine turbidity maxima always are located in or near the
Strait during spring tides, regardless of salinity. During neap tides,
surface estuarine turbidity maxima are landward of Carquinez Strait
and in the salinity range of 0–2‰.

Wave energy throughout the Bay ismainly generated by localwinds,
while ocean swell penetrating through the Golden Gate can only signif-
icantly affect exposed portions of Central Bay, such as the north-facing
San Francisco city shoreline (Hanes et al., 2011b) and the mudflats
in eastern Central Bay (Talke and Stacey, 2003). Waves play a minor
role in sediment transport throughout the deeper portions of the
Bay. However, the impact of local, wind-generated waves and ocean
swell can induce significant turbulence and sediment transport in shal-
low, fetch-exposed mudflats (Schoellhamer, 1996; Warner et al., 1996;
Talke and Stacey, 2003).

The U.S. Geological Survey began measuring suspended sediment
concentrations (SSCs) at several locations every 15 min in San Francisco
Bay in 1991, an effort that continues to this day at seven locations
(Schoellhamer, 2011; Buchanan and Morgan, 2012). Approximately
89% of the SSC variability in the Bay is associated with tidal cycles
(i.e., semidiurnal, fortnightly, monthly, semi-annual), seasonal wind,
and river supply (Schoellhamer, 2002). SSC is lowest during the summer
and into the fall, as the supply of erodible sediment decreases
(Schoellhamer, 2002), and overall, concentrations are highest in lower
South Bay,moderate in Suisun and San Pablo Bays, and lowest in Central
Bay (Schoellhamer, 2011).

3.2.1. Suisun Bay
The majority of Suisun Bay is shallower than 5 m and mud-

dominated, with several deeper (10–15 m) sandy, bedform-covered
channels running east–west through the sub-embayment that splits
from the main Delta channel. Suspended sediment transport peaks
during winter freshwater flows from the Delta into Suisun Bay, with a
portion of the material passing through to San Pablo Bay. During the
spring and summer, persistent onshore winds generate short-period
waves, resuspending sediment in both Suisun and San Pablo Bays: land-
ward near-bed flows and a gradient of suspended sediment concentra-
tion combine to transport sediment up estuary fromSan Pablo to Suisun
Bay, but by the fall the finer fraction of the erodible sediment pool is
significantly reduced (Krone, 1979; Ruhl and Schoellhamer, 2004;
Ganju and Schoellhamer, 2006). Tidal currents in the channels approach
1 m/s and estuarine turbidity reaches a maximum along the north side
of Carquinez Strait, due to high flow velocities (Schoellhamer and
Burau, 1998). Moskalski and Torres (2012) found that wind, river dis-
charge, and tides explained up to 75% of the variance of subtidal SSC.
Ganju et al. (2009) established that tidal and wind-wave forcing,
along with total load and peak flowmagnitude, are the most important
parameters for simulating geomorphic change. Carquinez Strait, which
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connects San Pablo Baywith Suisun Bay, reaches a depth of 35 m, and is
flanked by rock (Kimmerer, 2004).

3.2.2. San Pablo Bay
San Pablo Bay contains a single main channel, 11–24 m deep with

a mostly sandy bed, which connects Carquinez Strait with Central Bay
(Jaffe et al., 2007). Extensive shallow areas (most b4 m deep) and
tidal flats are mud-dominated and cover 80% of San Pablo Bay
(Locke, 1971). In effectively modeling multi-decadal deposition pat-
terns in San Pablo Bay, van der Wegen et al. (2011) found that river
discharge and sediment concentration had a strong positive influence
on sedimentation. The inclusion of waves in the model was found to
decrease deposition rates, and along with tidal currents, had the
most significant impact on sediment distribution. Waves are local,
wind-driven with limited fetch, and have been measured as high as
0.6 m (Schoellhamer et al., 2008a). When tidally-driven mixing pro-
cesses are weak, in particular during neap tides, stratification and
gravitational circulation are common. Stacey et al. (2008) note that
tidally-periodic stratification can also generate gravitational circula-
tion, while Ganju et al. (2006) demonstrated that low river flow effec-
tively reduced stratification in Carquinez Strait. Salt can intrude from
the Pacific Ocean into Suisun Bay during the dry months but only
reaches into San Pablo Bay during the wet months (Monismith et al.,
2002), when water levels are elevated by ~20 cm and sediment trans-
port is an order of magnitude higher. During high flows into Suisun
Bay from the Delta, the sediment pulse takes multiple days to reach
San Pablo Bay (van der Wegen et al., 2011).

3.2.3. South Bay
In South Bay, which receives considerably less river flow than

the other sub-embayments (Kimmerer, 2004), spring tidal currents
typically exceed 1 m/s in the channel and 0.4 m/s on the shoals
(Schoellhamer, 1996). The South Bay floor is dominated by mud-sized
sediments primarily derived from local watersheds, based on the
heavy mineral assemblage featuring jadeite and glaucophane that is
common in the bordering Coast Range to the southeast (Yancey and
Lee, 1972), although contributions from the San Joaquin–Sacramento
River watershed are also likely. Strong winds are typical during winter
storms and summer sea breezes (~7 m/s), resulting in significant
wave generation, sediment resuspension and basin wide circulation
(Conomos et al., 1985), possibly directed landward in the shallower
eastern channel and seaward in the main channel (Walters et al.,
1985). Bottom currents are seasonally-reversing and slower than the
other reaches, while surface non-tidal currents are primarily generated
by prevailing summer and winter storm winds and winter freshwater
flows from the Delta (Conomos, 1979). Sediment concentrations in
South Bay are generally higher during flood tides as wind waves
resuspend sediment during low water levels, particularly during the
persistent westerly and northwesterly winds in the summer and fall,
resulting in a net sediment flux toward the southeast (Lacy et al.,
1996). While wind waves are important for cohesive sediment
resuspension on shoals, large increases in sediment flux are due to the
nonlinear interaction of both wind waves and tidal currents (Brand
et al., 2010). In the channels, sediment concentration peaks during the
lowest spring tides, when turbid water is advected from the shoals
(Schoellhamer, 1996).

3.2.4. Central Bay
Landward of the Golden Gate, Central Bay is the deepest part of the

Bay, contains the coarsest sediment, and the strongest currents (Chin
et al., 1997, 2004). The western section is dominated by sandy bedform
fields (up to 90-m wavelengths) and exposed bedrock, while the
eastern Bay floor adjacent margins are primarily mud-dominated and
featureless (Rubin and McCulloch, 1979; Barnard and Kvitek, 2010;
Chin et al., 2010; Barnard et al., 2011b, 2012a). Sediment is up to
100 m thick (Carlson and McCulloch, 1970; Chin et al., 2004). Bedrock
pinnacles and sandy shoals focus currents and produce a wide range
of bedform morphologies that were first mapped in the late 1970's
using side-scan sonar (Rubin andMcCulloch, 1979) and several decades
later in high resolution multibeam (Chin et al., 1997; Dartnell and
Gardner, 1999; Barnard et al., 2011b, 2012a). Based on surficial grain
size distributions and the multibeam, backscatter and sidescan data of
Greene and Bizarro (2003), Chin et al. (2010) suggested that the sand
in Central Bay is derived from either outside the Bay, shoreline sedi-
ments and outcrops in the vicinity of the Golden Gate (the coarser
sands), or from San Pablo Bay (finer sands), with little mixing of the
two fractions.

3.3. Golden Gate

Through the Golden Gate, the channel floor is bedrock with a max-
imum depth of 113 m, where tidal currents accelerate through the
erosion-resistant rocky strait. The approximate depth and formation
have been linked to either downcutting of the Sacramento River dur-
ing the Last Glacial Maximum (Louderback, 1951) or a major fault
(Schlocker, 1974), with ongoing minor incision due to tidal scour. As
these currents decelerate, large bedforms are created on either side
of the Golden Gate Bridge/strait, including one of the largest sand
wave fields in the world (i.e., both spatial extent and wavelength)
just seaward of the strait (Barnard et al., 2006a,b). Tidal currents in
the inlet throat peak at over 2.5 m/s, and can exceed 1 m/s even on
the edge of the ebb-tidal delta, over 10 km from the Golden Gate
(Barnard et al., 2007a). These powerful and spatially variable currents
result in an incredibly diverse array of bedform sizes and shapes both
landward (Rubin andMcCulloch, 1979; Chin et al., 1997) and seaward
of the Golden Gate (Barnard et al., 2006a,b, 2012a).

The critical interface between San Francisco Bay and the open ocean
(a.k.a., the Golden Gate) is particularly complex, with strong vertical
stratification and lateral variability in current velocities and tidal
phase (Largier, 1996; Petzrick et al., 1996). Exchange is influenced by
a number of factors, including tidal flow, gravitational and lateral circu-
lation (ebb-dominated on the northern side and flood-dominated on
the southern side), wind stress, atmospheric pressure gradients, and
changes in water levels due to spring–neap cycles (Conomos, 1979;
Walters et al., 1985; Walters and Gartner, 1985; Largier, 1996;
Petzrick et al., 1996). Residual flow through the Golden Gate is driven
by subtidal processes such as tidal pumping, baroclinic flow, tidal trap-
ping of an eddy, and enhanced frictional phasing by a lateral density
gradient (Fram, 2005; Martin et al., 2007). While tidal forcing domi-
nates circulation overall, baroclinic and barotropic components of
wind-driven upwelling can play a critical role in the spring and sum-
mer, forcing denser water along the bottom into the Bay, inducing
gravitational circulation (Largier, 1996).

Fram et al. (2007) ran transects parallel to the Golden Gate bridge
with a boat-mounted acoustic Doppler current profiler (ADCP) and a
suite of towed instruments to measure rms instantaneous discharges
of 60,000 m3/s, mean discharges of 600 m3/s (net seaward), and a
mildly stratified channel, with salinities ranging from 30 to 33‰ (top
to bottom) in the summer and 32.0 to 32.4‰ in the fall. They also deter-
mined that both density gradients and bathymetry influence ocean-
estuary exchange, and that overall tidal exchange (i.e., salinity variabil-
ity between ebb and flood tides) is far less than prior studies indicated
(Parker et al., 1972; Largier, 1996). During the same experiment,
Martin et al. (2007) measured chlorophyll fluxes between Central Bay
and the Golden Gate, and found that fluxes were dominated by tidal
pumping, accounting for 64–93% of the net dispersive flux, and the
direction of the net advective flux (i.e., the physical mechanism driving
flow) was always seaward. Cheng et al. (1993) modeled neap and
spring tidal discharge during lowDeltaflows (~200 m3/s) at theGolden
Gate of 42,000–95,000 m3/s, and 5000–13,000 m3/s in Carquinez Strait.

The only direct estimates of suspended sediment transport using
in situ measurements across the Golden Gate were performed by
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Teeter et al. (1996). During a two week neap–spring period of low
Delta flow conditions, they performed repeated inlet cross-sectional
transects using boat-mounted ADCP systems, observing a clear net
seaward transport of suspended sediment of 188,000 metric tonnes,
with fluxes during ebb flows 44% higher on average than during
flood flows. No studies have made direct measurements of bedload
transport across the Golden Gate, however, an extensive study of
bedform asymmetry covering West-central Bay and the mouth of
San Francisco Bay suggests a net seaward flux of bedload through the
Golden Gate, further confirmed by applying a hydrodynamically-
validated numerical model to estimate the net flux of suspended load
and bedload across the inlet throat (Barnard et al., 2012a). The latest re-
search on the net direction and volume of sediment flux across the
Golden Gate will be presented in this special issue (Barnard et al.,
2013a,b–this issue; Elias and Hansen, 2013–this issue; Erikson et al.,
2013–this issue), essential information for quantifying the impact of a
reduced sediment supply from the Bay to the open coast, with numer-
ous estuary management implications (e.g., determining the appropri-
ate location and volumes for responsible aggregate mining, dredging,
and disposal).
3.4. The open coast

The open coast is a high-energy coastal environment comprising pri-
marily sandy beaches and bluffs to the south of the Golden Gate, and
rocky cliffs and pocket beaches to the north. The geology is controlled
by active tectonics with the San Andreas Fault Zone and San Gregorio
Fault Zone (Fig. 1) traversing directly through the region (Parsons
et al., 2002). This area is susceptible to highly energetic waves, being
exposed to swell from almost the entire Pacific Ocean. The average an-
nualmaximumoffshore significantwave height is 8.0 m, and the annual
average offshore significant wave height is 2.5 m (Scripps Institution of
Oceanography, 2012). Tidal currents peak at 1.5 m/s immediately adja-
cent to the Golden Gate entrance along the northern extent of Ocean
Beach, and still approach 1 m/s ~5 km north and south of the channel
entrance (Barnard et al., 2007a), as is evident by the vast distribution
of bedforms throughout the region (Barnard et al., 2012b). The combi-
nation of large waves, strong tidal currents, and active tectonics results
in an extremely complicated coastal system that has only recently
begun to be explored with a comprehensive study led by the
U.S. Geological Survey initiated in 2003. This effort has focused on the
physical processes controlling the sand waves in the Golden Gate
(Barnard et al., 2006a,b; Sterlini et al., 2009; Hanes, 2012), the geomor-
phic evolution of Ocean Beach and a persistent erosion hot spot
(Barnard and Hanes, 2005, 2006; Barnard et al., 2007a,b,c, 2009a,b,
2011a,c, 2012b; Erikson et al., 2007; Eshleman et al., 2007; Hansen
and Barnard, 2009, 2010; Hansen et al., 2011, 2013b; Hansen et al., in
review; Shi et al., 2011; Yates et al., 2011), and linking the physical pro-
cesses in the Bay with the open coast (Hanes and Barnard, 2007; Dallas,
2009;Dallas and Barnard, 2009, 2011;Hanes et al., 2011a; Barnard et al.,
2012a,b). Beach behavior at Ocean Beach is seasonally-modulated
(Hansen and Barnard, 2010), with occasionally severe erosion during
winter storms (Barnard et. al., 2011a) carrying large volumes of sedi-
ment offshore into an extensive nearshore bar system (Barnard et al.,
2011c), while the beach recovers during the lower energy summer
and fall (Hansen and Barnard, 2010). However, the morphology of the
adjacent ebb-tidal delta affects the distribution of wave heights, which
can vary by a factor of two, and sediment transport processes along
Ocean Beach, exerting a dominant control on short and long-term
beach evolution (Battalio and Trivedi, 1996; Eshleman et al., 2007;
Hansen and Barnard, 2009; Jones, 2011; Shi et al., 2011; Hansen et al.,
2013b; Hansen et al., in review). South of Ocean Beach, coastal bluff ero-
sion and landsliding are a dominant geomorphic process, driven com-
monly by over steepening at the toe due to wave action, and/or
precipitation-induced groundwater seepage (Collins and Sitar, 2008),
sporadically providing significant volumes of sediment to the littoral
cell.

3.5. Regional oceanography

Global sea level has been regionally-suppressed along the U.S.
West Coast since ~1980 due to the persistence of strong, northwest-
erly winds (Bromirski et al., 2011). However, northward propagating,
coastal-trapped waves can raise sea level along this portion of the
California coast up to 30 cm during an El Niño winter (e.g., as
occurred during 1982–83 and 1997–98) (Bromirski et al., 2003), with
an additional 5–10 cm of decadal variability possibly associated with
the Pacific Decadal Oscillation (Mantua et al., 1997). Non-tidal, water
level extremes inside San Francisco Bay are dominated by storm surges
that propagate from the open ocean into the Golden Gate, through the
Bay, and up into the lower reaches of the Sacramento–San Joaquin
Delta. Surge can force non-tide fluctuations as high as 70 cm at the
Golden Gate, although during extreme events these levels are often
exceeded in Suisun Bay due to both surge propagation into the
constricted sub-embayment and the commonly coincident timing of
high Delta discharge rates due to heavy rainfall (Bromirski and Flick,
2008). Along the exposed outer coast, long period ocean swell domi-
nates the wave energy spectrum throughout the year, although local
seas are often generated by strong northwesterly winds in the spring
and summer that produce coastal upwelling and generally dominate
shelf-scale circulation patterns (Largier et al., 2006; Kaplan et al.,
2009) beyond the influence of the Golden Gate, with these persistent
winds relaxing during the fall and winter (Largier et al., 1993).

4. Looking to the future-climate change impacts

Rising sea levels over the 21st century (e.g., Vermeer and
Rahmstorf, 2009) will increase the frequency of extreme water level
events in San Francisco Bay (Cayan et al., 2008), placing additional
stress on the San Francisco Bay Coastal System's tidal marshes (includ-
ingmassive restoration projects currently underway), levees, shorelines,
and ecosystems. Future warming scenarios for California consistently
project more precipitation falling as rain in the Sierras, resulting in
higher rainfall-related peaks earlier in the season and weaker snow-
melt-related peaks of the Delta hydrographs, as well as higher estuarine
salinity (e.g., Knowles and Cayan, 2002, 2004). These changes will un-
doubtedly impact circulation patterns and shift peak sediment loads to
earlier in the year (Ganju and Schoellhamer, 2010).

Knowles (2010) indicated that the present day 100-year coastal
flood event could occur annually by 2050, posing major threats to
critical infrastructure that surrounds the Bay, including the interna-
tional airports in Oakland and San Francisco, and placing 270,000
people and $62 billion of development at risk (San Francisco Bay
Conservation and Development Commission, 2012). Knowles (2010)
also noted that wetlands are particularly vulnerable, as they would
require a total sediment input (i.e., organic matter and inorganic sed-
iment) of up to 10.1 Mm3/year (~2.6 cm/year) by 2100 to keep pace
with the higher projections of sea level rise: presently only as much
as 0.4 Mm3/year is actually being deposited (Schoellhamer et al.,
2005) while accretion rates of 0.2–0.5 cm/year have kept pace with
recent rates of sea level rise (Callaway et al., 2012). Parker et al.
(2011) added that the brackish and freshwater tidal wetlands, in par-
ticular, will be additionally stressed by higher salinities and tempera-
tures, leading to lower plant productivity and correlative organic
input to the wetland, requiring even higher rates of mineral sediment
inputs for the wetland to keep pace with sea level rise.

Cloern et al. (2011) downscaled global climate models and linked
them to a series of regional physical and ecological models to assess
the impact of climate change for the San Francisco Bay region. Using
both a low and a high-end emission scenario, they concluded that pri-
mary impacts to the San Francisco Bay Coastal System over the next
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century include reduced fluvial discharge from the Delta, increased Bay
salinity, decline in suspended sediment concentration, and amarked in-
crease in the frequency of extreme water levels.

Ganju and Schoellhamer (2010) modeled geomorphic change in
Suisun Bay in response to future scenarios of climate change and sed-
iment supply, demonstrating in all cases that net sediment deposition
in the shallowest areas did not keep pace with sea level rise. The
greater depths decreased wave-induced bottom shear stress and
therefore sediment redistribution during the wind-wave season.
This suggests that existing intertidal mud flats and tidal marshes
may not be sustained in the future.

5. The special issue

As previously described, the San Francisco Bay Coastal System is a
complex marine system with powerful waves and tidal currents, intri-
cate estuarine circulation and sediment transport patterns, and signifi-
cant anthropogenic influences. Several compilations of the physical
processes of the Bay and watershed have been published (Conomos,
1979; Hollibaugh, 1996), however, until now, no synthesis of the past
20 years of science has been achieved. In the past 20 years, major wet-
land loss, seafloor and Bay floor sediment loss, and coastal erosion have
been well documented, inspiring considerable work to understand the
sources and transport pathways of sand- and mud-sized material, as
well as the governing physical processes that control the evolution of
the San Francisco Bay Coastal System. At the core of this research is a
comprehensive, multi-faceted sand provenance study that includes a
series of geochemical techniques, morphometric analyses, bedform
asymmetry quantification, numerical modeling, physical process mea-
surements, and faunal distribution analyses, synthesized in a unique
approach to establish provenance and transport. This work is com-
plemented by a series of focused efforts to understand fundamental
sediment transport processes and circulation patterns at a range of
spatial and temporal scales andwithin specific estuarine environments,
including: the exposed outer coast, tidal flats andmarshes, the inlet, Bay
floor and Bay tributaries.

This special issue of Marine Geology is divided into four primary
sections:

1) Introduction and framework geology
2) Sand provenance
3) Circulation patterns and geomorphic change
4) Fine sediment transport.

5.1. Section 1 — introduction and framework geology

The introduction explores the relevant research that has informed
our present knowledge of the San Francisco Bay Coastal System, in-
cluding landmark studies by Gilbert (1917), Conomos (1979), Krone
(1979), and Porterfield (1980) summarized in this paper, outlines
the framework geology of the region (Elder, 2013–this issue) and de-
scribes the sub-tidal habitats found at the core of the San Francisco
Bay Coastal System (Greene et al., 2013–this issue). This knowledge
has been greatly enriched due to the recent advances in high resolution
bathymetric mapping technology. These papers provide the key bound-
ary conditions for a more thorough understanding of the research
presented in the subsequent sections.

5.2. Section 2 — sand provenance

After having established a temporal connection between a major
reduction in the supply of sediment to San Francisco Bay since the
late 19th century (e.g., Gilbert, 1917: Porterfield, 1980; Wright and
Schoellhamer, 2004), the pervasive loss of sediment within the Bay
(Capiella et al., 1999; Foxgrover et al., 2004; Jaffe and Foxgrover,
2006; Jaffe et al., 2007; Fregoso et al., 2008; Barnard and Kvitek,
2010), the adjacent ebb-tidal delta (Hanes and Barnard, 2007) and
open coast beaches (Dallas, 2009; Dallas and Barnard, 2009, 2011;
Barnard et al., 2012b), Section 2 presents a series of papers utilizing
a wide variety of techniques to quantitatively establish the sources
and sinks of beach-sized sand within the San Francisco Bay Coastal
System. This section seeks to establish direct links between sediment
found throughout the region, including all major drainages, the Bay
floor, the open coast seafloor and beaches, and coastal cliffs. Techniques
include traditional heavy mineral analysis (Wong et al., 2013–this
issue) and X-ray diffraction (Hein et al., 2013–this issue), coupled
with more sophisticated analytical techniques such as the signature of
rare earth elements and strontium/neodymium isotopes (Rosenbauer
et al., 2013–this issue), numerical modeling (Erikson et al., 2013–this
issue), and nontraditional approaches such as bedform asymmetry
(Barnard et al., 2013a–this issue) and biogenic sediment constituent
distributions (McGann et al., 2013–this issue). By integrating all these
techniques (Barnard et al., 2013b–this issue), a highly comprehensive
understanding of sand transport sources, pathways, and sinks is
established, thereby providing direct evidence for the regional impacts
of sediment supply to and sediment removal from the San Francisco Bay
Coastal System.

5.3. Section 3 — circulation patterns and geomorphic change

Section 3 explores the complicated feedback between physical
forcing, geomorphology and resulting circulation patterns in the San
Francisco Bay Coastal System. This includes investigations along the
open coast and adjacent to the Golden Gate exploring sediment trans-
port processes at the mouth of San Francisco Bay (Elias and Hansen,
2013–this issue) and the influence of changes in the long-term
morphologic evolution of the ebb-tidal delta on nearshore processes
(Hansen et al., 2013a–this issue).

5.4. Section 4 — fine sediment transport

Understanding suspended sediment transport in San Francisco
Bay, particularly the mud fraction, is essential because it regulates
primary productivity (Cloern, 1987), affects water quality (e.g., the
availability and distribution of heavy metals: Schoellhamer et al.,
2007), and is a primary factor in controlling the formation and ero-
sion of wetlands and intertidal mud flats, crucial to ongoing extensive
habitat restoration efforts (Callaway et al., 2012). Section 4 explores
the state-of-the-art in our understanding of fine sediment transport,
via studies focusing on the sources and supply of fine sediment to
San Francisco Bay (McKee et al., 2013–this issue), anthropogenic in-
fluences on supply (Schoellhamer et al., 2013–this issue), and process
measurements (Downing-Kunz and Schoellhamer, 2013–this issue;
Hestir et al., 2013–this issue; Manning and Schoellhamer, 2013–this
issue; Shellenbarger et al., 2013–this issue). In addition, Section 4 in-
cludes a series of numerical modeling studies that improve our funda-
mental understanding and representation of the physical processes
that drive fine sediment transport, erosion, and deposition (Jones
and Jaffe, 2013–this issue; Bever and MacWilliams, 2013–this issue;
van der Wegen and Jaffe, 2013–this issue).

6. Summary

Despite the importance of estuaries as a critical physical, biological,
and chemical interface between drainage basins and the coastal
ocean, there is still a great deal to be learned about how they function,
especially in light of the vast direct and indirect anthropogenic influ-
ences that have severely altered their functioning throughout human
history. In this special issue, we present a series of papers that greatly
improve our fundamental understanding of sediment related coastal–
estuarine processes through state-of-the-art investigations of one of
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themost drastically altered estuaries in theworld, the San Francisco Bay
Coastal System.
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